The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells.

نویسندگان

  • S Schneider
  • F Bosse
  • D D'Urso
  • H Muller
  • M W Sereda
  • K Nave
  • A Niehaus
  • T Kempf
  • M Schnolzer
  • J Trotter
چکیده

The expression of the 330 kDa AN2 glycoprotein was studied in the rodent peripheral nervous system. AN2 is expressed by immature Schwann cells in vitro and in vivo and downregulated as the cells upregulate myelin genes. A subpopulation of nonmyelinating Schwann cells in the adult sciatic nerve retains expression of AN2. In rat sciatic nerve crushes, where Schwann cell numbers increase after initial axonal loss and markers of immature Schwann cells show an upregulation, no increased expression of AN2 was observed. In contrast, AN2 expression was upregulated in nerves from peripheral myelin protein-22-transgenic rats, where immature Schwann cells expand without axonal loss. Furthermore, coculture with neurons upregulated AN2 expression on Schwann cells in vitro. Polyclonal antibodies against AN2 inhibited the migration of an immortalized Schwann cell clone in an in vitro migration assay, and the purified AN2 protein was shown to be neither inhibitory nor permissive for outgrowing dorsal root ganglion neurites. AN2 is thus a novel marker for the Schwann cell lineage. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of purified AN2 from early postnatal mouse brain demonstrated that AN2 is the murine homolog of the rat NG2 proteoglycan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of the Schwann cell lineage: from the neural crest to the myelinated nerve.

The myelinating and nonmyelinating Schwann cells in peripheral nerves are derived from the neural crest, which is a transient and multipotent embryonic structure that also generates the other main glial subtypes of the peripheral nervous system (PNS). Schwann cell development occurs through a series of transitional embryonic and postnatal phases, which are tightly regulated by a number of signa...

متن کامل

Disruption of laminin in the peripheral nervous system impedes nonmyelinating Schwann cell development and impairs nociceptive sensory function.

The mechanisms controlling the differentiation of immature Schwann cells (SCs) into nonmyelinating SCs is not known. Laminins are extracellular matrix proteins critical for myelinating SC differentiation, but their roles in nonmyelinating SC development have not been established. Here, we show that the peripheral nerves of mutant mice with laminin-deficient SCs do not form Remak bundles, which ...

متن کامل

Apoptosis of Rat Adipose-Derived Stem Cells during Transdifferentiation to Schwann-Like Cell

Background: Adipose-derived stem cells (ADSCs) are a population of pluripotent cells used for tissue engineering purposes. The main purpose of the present study was to transdifferentiate the ADSCs to Schwann-like cells and to determine the intensity of apoptosis in ADSCs during the transdifferentiation process. Methods: ADSCs were isolated from the inguinal adipose tissue of adult rats and the ...

متن کامل

Comparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells

Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2001